日本猛片在线观看

  • <tr id='licQNY'><strong id='licQNY'></strong><small id='licQNY'></small><button id='licQNY'></button><li id='licQNY'><noscript id='licQNY'><big id='licQNY'></big><dt id='licQNY'></dt></noscript></li></tr><ol id='licQNY'><option id='licQNY'><table id='licQNY'><blockquote id='licQNY'><tbody id='licQNY'></tbody></blockquote></table></option></ol><u id='licQNY'></u><kbd id='licQNY'><kbd id='licQNY'></kbd></kbd>

    <code id='licQNY'><strong id='licQNY'></strong></code>

    <fieldset id='licQNY'></fieldset>
          <span id='licQNY'></span>

              <ins id='licQNY'></ins>
              <acronym id='licQNY'><em id='licQNY'></em><td id='licQNY'><div id='licQNY'></div></td></acronym><address id='licQNY'><big id='licQNY'><big id='licQNY'></big><legend id='licQNY'></legend></big></address>

              <i id='licQNY'><div id='licQNY'><ins id='licQNY'></ins></div></i>
              <i id='licQNY'></i>
            1. <dl id='licQNY'></dl>
              1. <blockquote id='licQNY'><q id='licQNY'><noscript id='licQNY'></noscript><dt id='licQNY'></dt></q></blockquote><noframes id='licQNY'><i id='licQNY'></i>

                Aluminium Produkt Beschreibung

                Aluminum Struktur
                7429-90-5
                • CAS-Nr.7429-90-5
                • Bezeichnung:Aluminium
                • Englisch Name:Aluminum
                • Synonyma:Aluminium
                  AE;AL;L16;a00;a95;ad1;ADO;AR2;ABPP;A 00
                • CBNumber:CB6227696
                • Summenformel:Al
                • Molgewicht:26.98
                • MOL-Datei:7429-90-5.mol
                Aluminium physikalisch-chemischer Eigenschaften
                • Schmelzpunkt: :660.37 °C(lit.)
                • Siedepunkt: :2460 °C(lit.)
                • Dichte :2.7 g/mL at 25 °C(lit.)
                • Flammpunkt: :400°C
                • storage temp.  :Flammables area
                • Aggregatzustand :wire
                • Farbe :Yellow
                • Wichte :2.702 (Water=1)
                • PH :0.5 (H2O, 20°C)
                • Widerstand (resistivity) :2.6548 μΩ-cm
                • Wasserl?slichkeit :Insoluble in water.
                • Sensitive  :Moisture Sensitive
                • Merck  :13,321 / 13,321
                • Expositionsgrenzwerte :TLV-TWA 10 mg/m3 (Al dust), 5 mg/m3 (pyrophoric Al powder and welding fumes), 2 mg/m3 (soluble Al salts and alkyls) (ACGIH).
                • Stabilit?t: :Stable. Powder is flammable. Reacts very exothermically with halogens. Moisture and air sensitive. Incompatible with strong acids, caustics, strong oxidizing agents, halogenated hydrocarbons.
                • CAS Datenbank :7429-90-5(CAS DataBase Reference)
                • NIST chemische Informationen :Aluminum(7429-90-5)
                • EPA chemische Informationen :Aluminum(7429-90-5)
                Sicherheit

                Aluminum Chemische Eigenschaften,Einsatz,Produktion Methoden

                • ERSCHEINUNGSBILD SILBRIG- WEISSESBIS GRAUES PULVER.
                • PHYSIKALISCHE GEFAHREN Staubexplosion der pulverisierten oder granulierten Substanz in Gemischen mit Luft m?glich.
                • CHEMISCHE GEFAHREN Reagiert mit Wasserund Alkoholen, und sehr heftig mit Oxidationsmitteln, starken S?uren, starken Basenund chlorierten Kohlenwasserstoffen unter Feuer- und Explosionsgefahr.
                • ARBEITSPLATZGRENZWERTE TLV: (als Al, pyrophores Pulver) 5 mg/m?(als TWA); TLV: (als Al, Metallstaub) 10 mg/m?(als TWA); (ACGIH 2005).
                  MAK: 1,5 mg/m?(Alveoleng?ngige Fraktion); 4 mg/m?(Einatembare Fraktion) Schwangerschaft: Gruppe D (DFG 2008).
                • AUFNAHMEWEGE Aufnahme in den K?rper durch Inhalation.
                • INHALATIONSGEFAHREN Verdampfung bei 20°C vernachl?ssigbar; eine gesundheitssch?dliche Partikelkonzentration in der Luft kann jedoch schnell erreicht werden.
                • WIRKUNGEN NACH WIEDERHOLTER ODER LANGZEITEXPOSITION Risiko der Lungensch?digung bei wiederholter oder l?ngerer Exposition gegenüber Staubpartikeln. M?glich sind Auswirkungen auf das Nervensystem mit nachfolgenden Funktionsst?rungen.
                • LECKAGE Verschüttetes Material in abgedeckten und trockenen Beh?ltern sammeln. Pers?nliche Schutzausrüstung: Atemschutzger?t, P2-Filter für sch?dliche Partikel.
                • R-S?tze Betriebsanweisung: R17:Selbstentzündlich an der Luft. Spontaneously flammable in air.
                  R15:Reagiert mit Wasser unter Bildung hochentzündlicher Gase.
                  R36/38:Reizt die Augen und die Haut.
                  R10:Entzündlich.
                  R67:D?mpfe k?nnen Schl?frigkeit und Benommenheit verursachen.
                  R65:Gesundheitssch?dlich: kann beim Verschlucken Lungensch?den verursachen.
                  R62:Kann m?glicherweise die Fortpflanzungsf?higkeit beeintr?chtigen.
                  R51/53:Giftig für Wasserorganismen, kann in Gew?ssern l?ngerfristig sch?dliche Wirkungen haben.
                  R48/20:Gesundheitssch?dlich: Gefahr ernster Gesundheitssch?den bei l?ngerer Exposition durch Einatmen.
                  R38:Reizt die Haut.
                  R11:Leichtentzündlich.
                • S-S?tze Betriebsanweisung: S7/8:Beh?lter trocken und dicht geschlossen halten.
                  S43:Zum L?schen . . . (vom Hersteller anzugeben) verwenden (wenn Wasser die Gefahr erh?ht, anfügen: "Kein Wasser verwenden").
                  S26:Bei Berührung mit den Augen sofort gründlich mit Wasser abspülen und Arzt konsultieren.
                  S62:Bei Verschlucken kein Erbrechen herbeiführen. Sofort ?rztlichen Rat einholen und Verpackung oder dieses Etikett vorzeigen.
                  S61:Freisetzung in die Umwelt vermeiden. Besondere Anweisungen einholen/Sicherheitsdatenblatt zu Rate ziehen.
                  S36/37:Bei der Arbeit geeignete Schutzhandschuhe und Schutzkleidung tragen.
                  S33:Ma?nahmen gegen elektrostatische Aufladungen treffen.
                  S29:Nicht in die Kanalisation gelangen lassen.
                  S16:Von Zündquellen fernhalten - Nicht rauchen.
                  S9:Beh?lter an einem gut gelüfteten Ort aufbewahren.
                • Aussehen Eigenschaften Al, Aluminium fein gepulvert, Bronze. Silberweißes Pulver, das bei feiner Verteilung und im Kontakt mit Oxidationsmitteln exposions- und brandgefährlich ist. Selbstentzündung an Luft möglich. Mit Wasser, Säuren und Laugen entwickelt Aluminium Wasserstoff.
                • Gefahren für Mensch und Umwelt Reagiert mit Wasser unter Bildung hochentzündlicher Gase (Wasserstoff).
                  Selbstentzündlich an der Luft.
                  Zu vermeidende Stoffe sind Laugen, Säuren, Oxidationsmittel, Halogene, Nitrate, Sulfate, Sulfide, Alkohole, Ammoniumverbindungen, Alkalihydroxide, Alkalisalze, Halogenkohlenwasserstoffe, Halbmetalloxide, Nichtmetalle, Nichtmetalloxide, Halogen-Halogenverbindungen, Metalloxide, Metallsalze, Luft, Sauerstoff, Quecksilberverbindungen, Halbmetallhalogenide und Nichtmetallhalogenide.
                  Reizt die Schleimhäute, verzögert die Wundheilung.
                • Schutzma?nahmen und Verhaltensregeln Schutzhandschuhe als kurzzeitiger Staubschutz.
                • Verhalten im Gefahrfall Einatmen von Stäuben unbedingt vermeiden.
                  Nicht in die Kanalisation gelangen lassen.
                  Trocken aufnehmen. Der Entsorgung zuführen. Staubentwicklung vermeiden.

                  Metallbrandpulver, trockener Sand, Zement.
                  Ungeeignete Löschmittel: Wasser, Kohlendioxid, Schaum, Pulver
                  Brennbar. Gefahr einer Staubexplosion.
                • Erste Hilfe Nach Hautkontakt: Mit reichlich Wasser abwaschen.
                  Nach Augenkontakt: Mit reichlich Wasser bei geöffnetem Lidspalt mindestens 10 Minuten ausspülen. Augenarzt hinzuziehen.
                  Nach Einatmen: Frischluft, Arzt konsultieren.
                  Nach Verschlucken: Viel Wasser trinken, Erbrechen auslösen, Arzt hinzuziehen.
                  Nach Kleidungskontakt: Kontaminierte Kleidung sofort entfernen.
                  Ersthelfer: siehe gesonderten Anschlag

                • Sachgerechte Entsorgung Getrennt sammeln oder in kleinen Portionen in Wasser eintragen. Vorsicht! Wasserstoffentwicklung!
                • Chemische Eigenschaften Aluminum is the most commonly available element in homes and workplaces. Aluminum is readily available for human ingestion through the use of food additives, antacids, buffered aspirin, astringents, nasal sprays, and antiperspirants; from drinking water; from automobile exhaust and tobacco smoke; and from using aluminum foil, aluminum cookware, cans, ceramics, and fi reworks. Aluminum toxicity and its association with Alzheimer’s disease in humans require more studies. Some data are against and some are for, because the evidences are inadequate and inconclusive to suggest aluminum as the primary cause of the disease. Prolonged periods of exposure to aluminum and dust causes coughing, wheezing, shortness of breath, memory loss, learning diffi culty, loss of coordination, disorientation, mental confusion, colic, heartburn, fl atulence, and headaches. Chronic exposures to alumina dust cause irritation to the eyes, skin, respiratory system, pulmonary fi brosis, and lung damage
                • Chemische Eigenschaften Aluminum metallic powder is a light, silvery-white to gray, odorless powder. Aluminum metallic powder is reactive and flammable. Aluminum is normally coated with a layer of aluminum oxide unless the particles are freshly formed. There are two main types of aluminum powder: the “fl ake” type made by stamping the cold metal and the “granulated” type made from molten aluminum. Pyro powder is an especially fi ne type of “fl ake” powder. Aluminum powders are used in paints, pigments, protective coatings, printing inks, rocket fuel, explosives, abrasives, and ceramics; the production of inorganic and organic aluminum chemicals; and as catalysts. Pyro powder is mixed with carbon and used in the manufacture of fi reworks. The coarse powder is used in aluminothermics.
                • Physikalische Eigenschaften Pure metallic aluminum is not found in nature. It is found as a part of compounds,especially compounded with oxygen as in aluminum oxide (Al2O3). In its purified form, aluminumis a bluish-white metal that has excellent qualities of malleability and ductility. Purealuminum is much too soft for construction or other purposes. However, adding as little as1% each of silicon and iron will make aluminum harder and give it strength.
                  Its melting point is 660.323°C, its boiling point is 2,519°C, and its density is 2.699 g/cm3.
                • Isotopes There are 23 isotopes of aluminum, and only one of these is stable. The singlestable isotope, Al-27, accounts for 100% of the element’s abundance in the Earth’scrust. All the other isotopes are radioactive with half-lives ranging from a few nanosecondsto 7.17×10+15 years.
                • Origin of Name From the Latin word alumen, or aluminis, meaning “alum,” which is a bitter tasting form of aluminum sulfate or aluminum potassium sulfate.
                • Occurrence Aluminum is the third most abundant element found in the Earth’s crust. It is found inconcentrations of 83,200 ppm (parts-per-million) in the crust. Only the nonmetals oxygenand silicon are found in greater abundance. Aluminum oxide (Al2O3) is the fourth mostabundant compound found on Earth, with a weight of 69,900 ppm. Another alum-typecompound is potassium aluminum sulfate [KAl(SO4)2?12H2O]. Although aluminum is notfound in its free metallic state, it is the most widely distributed metal (in compound form) onEarth. Aluminum is also the most abundant element found on the moon.
                  Almost all rocks contain some aluminum in the form of aluminum silicate minerals foundin clays, feldspars, and micas. Today, bauxite is the major ore for the source of aluminummetal. Bauxite was formed eons ago by the natural chemical reaction of water, which thenformed aluminum hydroxides. In addition to the United States, Jamaica and other Caribbeanislands are the major sources of bauxite. Bauxite deposits are found in many countries, butnot all are of high concentration.
                • Charakteristisch Alloys of aluminum are light and strong and can easily be formed into many shapes—thatis, it can be extruded, rolled, pounded, cast, and welded. It is a good conductor of electricityand heat. Aluminum wires are only about 65% as efficient in conducting electricity as arecopper wires, but aluminum wires are significantly lighter in weight and less expensive thancopper wires. Even so, aluminum wiring is not used in homes because of its high electricalresistance, which can build up heat and may cause fires.
                  Aluminum reacts with acids and strong alkali solutions. Once aluminum is cut, the freshsurface begins to oxidize and form a thin outer coating of aluminum oxide that protects themetal from further corrosion. This is one reason aluminum cans should not be discarded inthe environment. Aluminum cans last for many centuries (though not forever) because atmosphericgases and soil acids and alkalis react slowly with it. This is also the reason aluminumis not found as a metal in its natural state.
                • History The ancient Greeks and Romans used alum in medicine as an astringent, and as a mordant in dyeing. In 1761 de Morveau proposed the name alumine for the base in alum, and Lavoisier, in 1787, thought this to be the oxide of a still undiscovered metal. Wohler is generally credited with having isolated the metal in 1827, although an impure form was prepared by Oersted two years earlier. In 1807, Davy proposed the name alumium for the metal, undiscovered at that time, and later agreed to change it to aluminum. Shortly thereafter, the name aluminium was adopted to conform with the “ium” ending of most elements, and this spelling is now in use elsewhere in the world. Aluminium was also the accepted spelling in the U.S. until 1925, at which time the American Chemical Society officially decided to use the name aluminum thereafter in their publications. The method of obtaining aluminum metal by the electrolysis of alumina dissolved in cryolite was discovered in 1886 by Hall in the U.S. and at about the same time by Heroult in France. Cryolite, a natural ore found in Greenland, is no longer widely used in commercial production, but has been replaced by an artificial mixture of sodium, aluminum, and calcium fluorides. Bauxite, an impure hydrated oxide ore, is found in large deposits in Jamaica, Australia, Suriname, Guyana, Russia, Arkansas, and elsewhere. The Bayer process is most commonly used today to refine bauxite so it can be accommodated in the Hall–Heroult refining process used to make most aluminum. Aluminum can now be produced from clay, but the process is not economically feasible at present. Aluminum is the most abundant metal to be found in the Earth’s crust (8.1%), but is never found free in nature. In addition to the minerals mentioned above, it is found in feldspars, granite, and in many other common minerals. Twenty-two isotopes and isomers are known. Natural aluminum is made of one isotope, 27Al. Pure aluminum, a silvery- white metal, possesses many desirable characteristics. It is light, nontoxic, has a pleasing appearance, can easily be formed, machined, or cast, has a high thermal conductivity, and has excellent corrosion resistance. It is nonmagnetic and nonsparking, stands second among metals in the scale of malleability, and sixth in ductility. It is extensively used for kitchen utensils, outside building decoration, and in thousands of industrial applications where a strong, light, easily constructed material is needed. Although its electrical conductivity is only about 60% that of copper, it is used in electrical transmission lines because of its light weight. Pure aluminum is soft and lacks strength, but it can be alloyed with small amounts of copper, magnesium, silicon, manganese, and other elements to impart a variety of useful properties. These alloys are of vital importance in the construction of modern aircraft and rockets. Aluminum, evaporated in a vacuum, forms a highly reflective coating for both visible light and radiant heat. These coatings soon form a thin layer of the protective oxide and do not deteriorate as do silver coatings. They have found application in coatings for telescope mirrors, in making decorative paper, packages, toys, and in many other uses. The compounds of greatest importance are aluminum oxide, the sulfate, and the soluble sulfate with potassium (alum). The oxide, alumina, occurs naturally as ruby, sapphire, corundum, and emery, and is used in glassmaking and refractories. Synthetic ruby and sapphire have found application in the construction of lasers The Elements 4-3 for producing coherent light. In 1852, the price of aluminum was about $1200/kg, and just before Hall’s discovery in 1886, about $25/kg. The price rapidly dropped to 60¢ and has been as low as 33¢/kg. The price in December 2001 was about 64¢/ lb or $1.40/kg.
                • Verwenden As pure metal or alloys (magnalium, aluminum bronze, etc.) for structural material in construction, automotive, electrical and aircraft industries. In cooking utensils, highway signs, fencing, containers and packaging, foil, machinery, corrosion resistant chemical equipment, dental alloys. The coarse powder in aluminothermics (thermite process); the fine powder as flashlight in photography; in explosives, fireworks, paints; for absorbing occluded gases in manufacture of steel. In testing for Au, As, Hg; coagulating colloidal solutions of As or Sb; pptg Cu; reducer for determining nitrates and nitrites; instead of Zn for generating hydrogen in testing for As. Forms complex hydrides with lithium and boron, such as LiAlH4, which are used in preparative organic chemistry.
                • Verwenden Aluminum finds wide applications for industrialand domestic purposes. Fine powder isused in explosives, in fireworks, as flashlightsin photography, and in aluminumpaints. It is commonly used in alloys withother metals and is nonhazardous as alloys.
                • Verwenden Aluminum is a very versatile metal with many uses in today’s economy, the most common ofwhich are in construction, in the aviation-space industries, and in the home and automobile industries.Its natural softness is overcome by alloying it with small amounts of copper or magnesium thatgreatly increase its strength. It is used to make cans for food and drinks, in pyrotechnics, for protectivecoatings, to resist corrosion, to manufacture die-cast auto engine blocks and parts, for homecooking utensils and foil, for incendiary bombs, and for all types of alloys with other metals.
                  Aluminum does not conduct electricity as well as copper, but because it is much lighter inweight, it is used for transmission lines, though not in household wiring. A thin coating ofaluminum is spread on glass to make noncorroding mirrors. Pure oxide crystals of aluminumare known as corundum, which is a hard, white crystal and one of the hardest substancesknown. Corundum finds many uses in industry as an abrasive for sandpaper and grindingwheels. This material also resists heat and is used for lining high-temperature ovens, to formthe white insulating part of spark plugs, and to form a protective coating on many electronicdevices such a transistors.Aluminum oxide is used to make synthetic rubies and sapphires for lasers beams. It hasmany pharmaceutical uses, including ointments, toothpaste, deodorants, and shaving creams.
                • Definition A soft moderately reactive metal; the second element in group 3 of the periodic table. It was formerly classified in subgroup IIIA. Aluminum has the electronic structure of neon plus three additional outer electrons. There are numerous minerals of aluminum; it is the most common metallic element in the Earth’s crust (8.1% by weight) and the third in order of abundance. Commercially important minerals are bauxite (hydrated Al2O3), corundum (anhydrous Al2O3), cryolite (Na3AlF6), and clays and mica (aluminosilicates).
                  The metal is produced on a massive scale by the Hall–Heroult method in which alumina, a non-electrolyte, is dissolved in molten cryolite and electrolyzed. The bauxite contains iron, which would contaminate the product, so the bauxite is dissolved in hot alkali, the iron oxide is removed by filtration, and the pure alumina then precipitated by acidification. Molten aluminum is tapped off from the base of the cell and oxygen evolved at the anode. The aluminum atom is much bigger than boron (the first member of group 3) and its ionization potential is not particularly high. Consequently aluminum forms positive ions Al3+. However, it also has non-metallic chemical properties. Thus, it is amphoteric and also has a number of covalently bonded compounds.
                  Unlike boron, aluminum does not form a vast range of hydrides – AlH3 and Al2H6 may exist at low pressures, and the only stable hydride, (AlH3)n, must be prepared by reduction of aluminum trichloride. The ion AlH4 - is widely used in the form of LiAlH4 as a vigorous reducing agent.
                  The reaction of aluminum metal with oxygen is very exothermic but at ordinary temperatures an impervious film of the oxide protects the bulk metal from further attack. This oxide film also protects aluminum from oxidizing acids. There is only one oxide, Al2O3 (alumina), but a variety of polymorphs and hydrates are known. It is relatively inert and has a high melting point, and for this reason is widely used as a furnace lining and for general refractory brick. Aluminum metal will react with alkalis releasing hydrogen and producing initially Al(OH)3 then Al(OH)4 -.
                  Aluminum reacts readily with the halogens; in the case of chlorine thin sheets will burst into flame. The fluoride has a high melting point (1290°C) and is ionic. The other halides are dimers in the vapor phase (two halogen bridges). Aluminum also forms a sulfide (Al2S3), nitride (AlN), and carbide (Al4C), the l
                  atter two at extremely high temperatures. Because of aluminum’s ability to expand its coordination number and tendency towards covalence it forms a variety of complexes such as AlF6 2- and AlCl4-. A number of very reactive aluminum alkyls are also known, some of which are important as polymerization catalysts.
                  Symbol: Al; m.p. 660.37°C; b.p. 2470°C; r.d. 2.698 (20°C); p.n. 13; r.a.m. 26.981539.
                • Definition aluminium: Symbol Al. A silverywhitelustrous metallic element belongingto group 3 (formerly IIIB) ofthe periodic table; a.n. 13; r.a.m.26.98; r.d. 2.7; m.p. 660°C; b.p.2467°C. The metal itself is highly reactivebut is protected by a thintransparent layer of the oxide, whichforms quickly in air. Aluminium andits oxide are amphoteric. The metalis extracted from purified bauxite(Al2O3) by electrolysis; the mainprocess uses a Hall–Heroult cell butother electrolytic methods are underdevelopment, including conversionof bauxite with chlorine and electrolysisof the molten chloride. Pure aluminiumis soft and ductile but itsstrength can be increased by workhardening.A large number of alloysare manufactured; alloying elementsinclude copper, manganese, silicon,zinc, and magnesium. Its lightness,strength (when alloyed), corrosion resistance,and electrical conductivity(62% of that of copper) make it suitablefor a variety of uses, includingvehicle and aircraft construction,building (window and door frames),and overhead power cables. Althoughit is the third most abundantelement in the earth’s crust (8.1% byweight) it was not isolated until 1825by H. C. Oersted.
                • Definition ChEBI: An aluminium cation that has a charge of +3.
                • Allgemeine Beschreibung Aluminum metal held above melting point of 1220°F (660°C) for ease in handling. Cools and solidifies if released. Contact causes thermal burns. Plastic or rubber may melt or lose strength upon contact. Protective equipment designed for chemical exposure only is not effective against direct contact. Take care walking on the surface of a spill to avoid stepping into a pocket of molten aluminum below the crust. Do not attempt to remove aluminum impregnated clothing because of the danger of tearing flesh if there has been a burn.
                • Air & Water Reaktionen Violent reaction with water; contact may cause an explosion or may produce a flammable gas (hydrogen). Moist air produces hydrogen gas. Does not burn on exposure to air.
                • Reaktivit?t anzeigen ALUMINUM , MOLTEN, is a reducing agent. Coating moderates or greatly moderates its chemical reactivity compared to the uncoated material. Reacts exothermically if mixed with metal oxides and heated (thermite process). Heating a mixture with copper oxides caused a strong explosion [Mellor 5:217-19 1946-47]. Reacts with metal salts, mercury and mercury compounds, nitrates, sulfates, halogens, and halogenated hydrocarbons to form compounds that are sensitive to mechanical shock [Handling Chemicals Safely 1980. p. 135]. A number of explosions in which ammonium nitrate and powdered aluminum were mixed with carbon or hydrocarbons, with or without oxidizing agents, have occurred [Mellor 5:219 1946-47]. A mixture with powdered ammonium persulfate and water may explode [NFPA 491M 1991]. Heating a mixture with bismuth trioxide leads to an explosively violent reaction [Mellor 9:649 (1946-47)]. Mixtures with finely divided bromates(also chlorates and iodates) of barium, calcium, magnesium, potassium, sodium or zinc can explode by heat, percussion, and friction, [Mellor 2:310 (1946-47]. Burns in the vapor of carbon disulfide, sulfur dioxide, sulfur dichloride, nitrous oxide, nitric oxide, or nitrogen peroxide, [Mellor 5:209-212,1946-47]. A mixture with carbon tetrachloride exploded when heated to 153° C and also by impact, [Chem. Eng. News 32:258 (1954)]; [UL Bull. Research 34 (1945], [ASESB Pot. Incid. 39 (1968)]. Mixing with chlorine trifluoride in the presence of carbon results in a violent reaction [Mellor 2 Supp. 1: 1956]. Ignites in close contact with iodine. Three industrial explosions involving a photoflash composition containing potassium perchlorate with aluminum and magnesium powder have occurred [ACS 146:210 1945], [NFPA 491M 1991]. Is attacked by methyl chloride in the presence of small amounts of aluminum chloride to give flammable aluminum trimethyl. Give a detonable mixture with liquid oxygen [NFPA 491M 1991]. The reaction with silver chloride, once started, proceeds with explosive violence [Mellor 3:402 1946-47]. In an industrial accident, the accidental addition of water to a solid mixture of sodium hydrosulfite and powdered aluminum caused the generation of SO2, heat and more water. The aluminum powder reacted with water and other reactants to generate more heat, leading to an explosion that killed five workers [Case Study, Accident Investigation: Napp Technologies, 14th International Hazardous Material Spills Conference].
                • Hazard Aluminum dust and fine powder are highly explosive and can spontaneously burst intoflames in air. When treated with acids, aluminum chips and coarse powder release hydrogen.The heat from the chemical reaction can then cause the hydrogen to burn or explode. Purealuminum foil or sheet metal can burn in air when exposed to a hot enough flame. Fumesfrom aluminum welding are toxic if inhaled.
                • Health Hazard Exposures to aluminum metallic powder have been known to cause health effects with symptoms such as irritation, redness, and pain to the eyes, coughing, shortness of breath, irritation to the respiratory tract, nausea, and vomiting in extreme cases. In prolonged periods of inhalation exposures, as in occupational situations, aluminum metallic powder is known to cause pulmonary fi brosis, numbness in fi ngers, and (in limited cases) brain effects. Workers with pre-existing skin disorders, eye problems, or impaired respiratory function are known to be more susceptible to the effects of aluminum metallic powder.
                • Brandgefahr Substance is transported in molten form at a temperature above 705°C (1300°F). Violent reaction with water; contact may cause an explosion or may produce a flammable gas. Will ignite combustible materials (wood, paper, oil, debris, etc.). Contact with nitrates or other oxidizers may cause an explosion. Contact with containers or other materials, including cold, wet or dirty tools, may cause an explosion. Contact with concrete will cause spalling and small pops.
                • Landwirtschaftliche Anwendung Aluminum, the third most abundant element in the earth’s crust, is a silvery-white lustrous metal belonging to Group 13 of the Periodic Table. The metal is highly reactive and is protected by a thick transparent oxide layer that gets formed quickly in air. Aluminum and its oxides are amphoteric.
                  Pure aluminum, which exists in a large number of alloys, is extracted from purified bauxite by electrolysis. Its lightness, strength (when alloyed), corrosion resistance and electrical conductivity make aluminum suitable for a variety of uses, including in the construction of vehicles, aircrafts, buildings and overhead power cables.
                  Aluminum (Al) is an important soil constituent. It is toxic to most plants at a soil pH below 6.0.
                  Aluminum ion forms octahedral coordination with water molecules and hydroxyl ions. If soil is not strongly acidic, one (or more) of the water molecules ionizes, releasing the hydrogen ion (H+)in to the solution and increasing the soil acidity.
                  The toxic level of soluble and exchangeable aluminum can be substantially reduced by first raising the soil pH in the range of 5.2 to 5.5 and by further liming to make it in the range of 6.0 to 6.5.
                  In acidic soils, aluminum may compete for uptake with copper and make the soil copper deficient. Molybdenum is adsorbed strongly by oxides of aluminum and iron, thereby making the molybdenum unavailable to plants. Increasing aluminum in the soil solution also restricts the uptake of calcium and magnesium by plants.
                  Aluminum ions are toxic to the roots of many plants such as cotton, tomato, alfalfa, celery, barley, corn, sorghum, and sugar beets. Aluminum toxicity is probably the most important growth limiting factor in many acid soils.
                  The symptoms of aluminum toxicity caused by excess soluble aluminum are not easily recognize in crop plants. White-yellow interveinal blotches form on leaves causing them to dry out and die. Aluminum toxicity also reduces the growth of both shoots and roots.
                  An excess of aluminum interferes with cell division in plant roots, inhibits nodule initiation (by fixing the soil phosphorus to forms that are less available to plant roots), and decreases root respiration. Aluminum interferes with enzymes controlling the deposition of polysaccharides in cell walls and increases cell wall rigidity by cross-linking with pectins. It reduces the uptake, transport, and use of nutrients and water by the plant.
                  Aluminum-injured roots are characteristically stubby and brittle. The root tips and lateral roots thicken and turn brown. The root system as a whole, appears coralline, with many stubby lateral roots but no fine branching.
                  The toxicity problem of aluminum is not economically correctable with conventional liming practices. A genetic approach has the potential to solve the problem of aluminum toxicity in acid soils.
                • Industrielle Verwendung Alloying aluminum with various elementsmarkedly improves mechanical properties,strength primarily, at only a slight sacrifice indensity, thus increasing specific strength, orstrength-to-weight ratio. Traditionally, wroughtalloys have been produced by thermomechanicallyprocessing cast ingot into mill productssuch as billet, bar, plate, sheet, extrusions, andwire. For some alloys, however, such mill productsare now made by similarly processing“ingot” consolidated from powder. Such alloysare called PM (powder metal) wrought alloysor simply PM alloys. To distinguish the traditionaltype from these, they are now sometimesreferred to as ingot-metallurgy (IM) alloys oringot-cast alloys. Another class of PM alloysare those used to make PM parts by pressingand sintering the powder to near-net shape.There are also many cast alloys. All told, thereare about 100 commercial aluminum alloys.
                • Industrielle Verwendung Called aluminium in England, aluminum is a white metal with a bluish tinge (symbol Al, atomic weight 26.97), obtained chiefly from bauxite. It is the most widely distributed of the elements next to O2 and silicon, occurring in all common clays. Aluminum metal is produced by first extracting alumina (aluminum oxide) from the bauxite by a chemical process. The alumina is then dissolved in a molten electrolyte, and an electric current is passed through it, causing the metallic aluminum to be deposited on the cathode. The metal was discovered in 1727, but was obtained only in small amounts until it was reduced electrolytically in 1885.
                  Pure (99.99%) aluminum has a specific gravity of 2.70 or a density of 2685 kg/m3, a melting point of 660 C, electrical and thermal conductivities about two thirds that of copper, and a tensile modulus of elasticity of 62,000 MPa. The metal is nonmagnetic, highly reflective, and has a face-centered cubic (fcc) crystal structure. Soft and ductile in the annealed condition, it is readily cold-worked to moderate strength. It resists corrosion in many environments as the result of the presence of a thin aluminum oxide film.
                  Aluminum hot-dip coatings (usually about 1mm) are more expensive but much more atmospheric-resistant than zinc. The coatings arealso highly heat-reflective and the aluminum–iron alloy layer is highly refractory.Although these coatings seem promising formore general use in outdoor (especially industrial)atmospheres, they are currently used primarilyto protect steel from high-temperatureoxidation; typical applications include aircraftfire walls, toasters, automobile mufflers, andwater heater casings. Hot-dip aluminum-coated(aluminized) steel sheet, strip, and wire arecommercially available.
                • Industrielle Verwendung The element aluminium has the atomic number 13 and chemical symbol Al. Aluminium forms a diagonal relationship with beryllium. The name ‘aluminium’ derives from the salt alum (potassium alum, KAl(SO4)2·12H2O), which was used for medicinal purposes in Roman times. Initially, it was very difficult to prepare pure aluminium and therefore it was regarded as a very precious substance. In the mid-1800s, aluminium cutlery was used for elegant dinners, whereas it is nowadays used as lightweight camping cutlery. In 1886, the manufacture of aluminium by electrolysis of bauxite started, and the price for pure aluminium dropped significantly. Aluminium is a soft, durable and lightweight metal, which makes it attractive to many applications. Nowadays, aluminium is mainly used for the construction of cars and aircrafts and can be found in packaging and construction materials.
                • Sicherheitsprofil Although aluminum is not generally regarded as an industrial poison, inhalation of finely dwided powder has been reported to cause pulmonary fibrosis. It is a reactive metal and the greatest industrial hazards are with chemical reactions. As with other metals the powder and dust are the most dangerous forms. Dust is moderately flammable and explosive by heat, flame, or chemical reaction with powerful oxidizers. To fight fire, use special mixtures of dry chemical. following dangerous interactions: explosive reaction after a delay period with KClO4 + Ba(NO3)2 + mo3 + H20, also with Ba(NO3)2 + mo3 + sulfur + vegetable adhesives + H2O. Wxtures with powdered AgCl, NH4NO3 or NH4NO3 + Ca(NO3)2 + formamide + H20 are powerful explosives. Murture with ammonium peroxodisulfate + water is explosive. Violent or explosive "thermite" reaction when heated with metal oxides, oxosalts (nitrates, sulfates), or sulfides, and with hot copper oxide worked with an iron or steel tool. Potentially explosive reaction with ccl4 during ball milling operations. Many violent or explosive reactions with the following halocarbons have occurred in industry: bromomethane, bromotrifluoromethane, ccl4, chlorodfluoromethane, chloroform, chloromethane, chloromethane + 2methylpropane, dchlorodifluoromethane, 1,2-dichloroethane, dichloromethane, 1,2dichloropropane, 1,2-difluorotetrafluoroethane, fluorotrichloroethane, hexachloroethane + alcohol, polytrifluoroethylene oils and greases, tetrachloroethylene, tetrafluoromethane, 1,1,1trichloroethane, trichloroethylene, 1,1,2trichlorotrifluoro-ethane, and trichlorotrifluoroethane-dchlorobenzene. Potentially explosive reaction with chloroform amidinium nitrate. Ignites on contact with vapors of AsCl3, SC4, Se2Cl2, and PCl5. Reacts violently on heating with Sb or As. Ignites on heating in SbCl3 vapor. Ignites on contact with barium peroxide. Potentially violent reaction with sodium acetylide. Mixture with sodum peroxide may ignite or react violently. Spontaneously igmtes in CS2 vapor. Halogens: ignites in Powdered aluminum undergoes the chlorine gas, foil reacts vigorously with liquid Br2, violent reaction with H20 + 12. Violent reaction with hydrochloric acid, hydro-fluoric acid, and hydrogen chloride gas. Violent reaction with disulfur dbromide. Violent reaction with the nonmetals phosphorus, sulfur, and selenium. Violent reaction or ignition with the interhalogens: bromine pentafluoride, chlorine fluoride, iodne chloride, iodine pentafluoride, and iodne heptafluoride. Burns when heated in CO2. Ignites on contact with O2, and mixtures with O2 + H20 ignite and react violently. Mixture with picric acid + water ignites after a delay period. Explosive reaction above 800°C with sodium sulfate. Violent reaction with sulfur when heated. Exothermic reaction with iron powder + water releases explosive hydrogen gas. Aluminum powder also forms sensitive explosive mixtures with oxidants such as: liquid Cl2 and other halogens, N2O4, tetranitromethane, bromates, iodates, NaClO3, KClO3, and other chlorates, NaNO3, aqueous nitrates, KClO4 and other perchlorate salts, nitryl fluoride, ammonium peroxodisulfate, sodium peroxide, zinc peroxide, and other peroxides, red phosphorus, and powdered polytetrafluoroethylene (PTFE). following dangerous interactions: exothermic reaction with butanol, methanol, 2-propanol, or other alcohols, sodium hydroxide to release explosive hydrogen gas. Reaction with dborane forms pyrophoric product. Ignition on contact with niobium oxide + sulfur. Explosive reaction with molten metal oxides, oxosalts (nitrates, sulfates), sulfides, and sodium carbonate. Reaction with arsenic trioxide + sodum arsenate + sodium hydroxide produces the toxic arsine gas. Violent reaction with chlorine trifluoride. Incandescent reaction with formic acid. Potentially violent alloy formation with palladium, platinum at mp of Al, 600℃. Vigorous dssolution reaction in Bulk aluminum may undergo the ALUMINUM CHLORIDE HYDROXIDE AHAOOO
                • m?gliche Exposition Most hazardous exposures to aluminum occur in smelting and refining processes. Aluminum is mostly produced by electrolysis of Al2O3 dissolved in molten cryolite (Na3AlF6). Aluminum is alloyed with copper, zinc, silicon, magnesium, manganese, and nickel; special additives may include chromium, lead, bismuth, titanium, zirconium, and vanadium. Aluminum and its alloys can be extruded or processed in rolling mills, wire works, forges, or foundries; and are used in the shipbuilding, electrical, building, aircraft, automobile, light engineering, and jewelry industries. Aluminum foil is widely used in packaging. Powdered aluminum is used in the paints and pyrotechnic industries. Alumina, emery, and corundum has been used for abrasives, refractories, and catalysts; and in the past in the first firing of china and pottery.
                • Lager Aluminum metallic powder should be kept stored in a tightly closed container, in a cool, dry, ventilated area, protected against physical damage and isolated from sources of heat, ignition, smoking areas, and moisture. Aluminum metallic powder should be kept away from acidic, alkaline, combustible, and oxidizing materials and separate from halogenated compounds.
                • Versand/Shipping UN1309 Aluminum powder, coated, Hazard Class: 4.1; Labels: 4.1-Flammable solid. UN1383 Pyrophoric metals, n.o.s. or Pyrophoric alloys, n.o.s., Hazard Class: 4.2; Labels: 4.2-Spontaneously combustible material, Technical Name Required. UN1396 Aluminum powder, uncoated, Hazard Class: 4.3; Labels: 4.3-Dangerous when wet material. NA9260 (North America) Aluminum, molten, Hazard class: 9; Labels: 9-Miscellaneous hazardous material.
                • Inkompatibilit?ten Aluminum powder forms an explosive mixture with air and is a strong reducing agent that reacts violently with oxidizers, strong bases; strong acids; somehalogenated hydrocarbons; nitrates, sulfates, metal oxides and many other substances. Keep away from combustible materials.
                • Waste disposal Consult with environmental regulatory agencies for guidance on acceptable disposalpractices. Generators of waste containing this contaminant (≥100 kg/mo) must conform with EPA regulations governing storage, transportation, treatment, and waste disposal of Aluminum Oxide-Disposal in a sanitary landfill. Mixing of industrial process wastes and municipal wastes at such sites is not encouraged however. Aluminum powder may be recovered and sold as scrap. Recycling and recovery is a viable option to disposal for aluminum metal and aluminum fluoride (A-57).
                • Vorsichtsma?nahmen The dry powder is stable but the damp or moist bulk dust may heat spontaneously and form flammable hydrogen gas. Moist aluminum powder may ignite in air, with the formation of flammable hydrogen gas and a combustible dust. Powdered material may form explosive dust-air mixtures. Contact with water, strong acids, strong bases, or alcohols releases flammable hydrogen gas. The dry powder can react violently or explosively with many inorganic and organic chemicals
                Aluminum Upstream-Materialien And Downstream Produkte
                Upstream-Materialien
                Downstream Produkte
                Aluminium Anbieter Lieferant Produzent Hersteller Vertrieb Händler.
                Global(0)Suppliers
                7429-90-5, Aluminum Verwandte Suche:
                • Aluminum slug, 3.175mm (0.125in) dia x 3.175mm (0.125in) length, Puratronic|r, 99.9995% (metals basi
                • Aluminium, powder,99.99%
                • Aluminum flake, APS 1-2 micron, 99.8% (metals basis)
                • Aluminum powder, spherical, APS approximately 0.07 micron
                • Aluminum rod, 9.5mm (0.37in) dia, Puratronic, 99.999% (metals basis)
                • Aluminum foil, 0.25mm (0.01in) thick, Puratronic, 99.997% (metals basis)
                • Aluminum foil, 0.5mm (0.02in) thick, Puratronic, 99.998% (metals basis)
                • Aluminum foil, 1.0mm (0.04in) thick, Puratronic, 99.998% (metals basis)
                • Aluminum, Organic AAS standard solution, Specpure|r, Al 1000^mg/g
                • Aluminum foil, 0.25mm (0.01in) thick, annealed, Puratronic, 99.9995% (metals basis)
                • Aluminum foil, 0.25mm (0.01in) thick, annealed, Puratronic, 99.9999% (metals basis)
                • Aluminum foil, 0.5mm (0.02in) thick, annealed, Puratronic, 99.9999% (metals basis)
                • Aluminum shot, approx. 4-8mm (0.2-0.3in), Puratronic, 99.999% (metals basis)
                • Aluminum wire, 0.5mm (0.02in) dia, annealed, Puratronic, 99.9995% (metals basis)
                • Aluminum wire, 0.5mm (0.02in) dia, annealed, Puratronic, 99.9999% (metals basis)
                • Aluminum slug, 3.175mm (0.125in) dia x 3.175mm (0.125in) length, Puratronic, 99.9999% (metals basis)
                • Aluminum slug, 6.35mm (0.25in) dia x 12.7mm (0.5in) length, Puratronic, 99.9999% (metals basis)
                • Aluminum slug, 6.35mm (0.25in) dia x 6.35mm (0.25in) length, Puratronic, 99.999% (metals basis)
                • Aluminum rod, 22mm (0.87in) dia, Puratronic, 99.9999% metals basis)
                • Aluminum rod, 6mm (0.2in) dia, Puratronic, 99.9965% (metals basis)
                • Aluminum foil, 0.038 +/- 0.007mm (0.0015 +/- 0.0003in) thick, Puratronic, 99.9995% (metals basis)
                • Aluminum rod, 22mm (0.87in) dia, Puratronic, 99.999% (metals basis)
                • Aluminum rod, 22mm (0.87in) dia, Puratronic, 99.9995% (metals basis)
                • Aluminum rod, 6.35mm (0.25in) dia, Puratronic, 99.999% (metals basis)
                • Aluminum foil, 0.1mm (0.004in) thick, Puratronic, 99.997% (metals basis)
                • Aluminum foil, 0.2mm (0.008in) thick, annealed, Puratronic, 99.9995% (metals basis)
                • Aluminum foil, 0.2mm (0.008in) thick, Puratronic, 99.997% (metals basis)
                • Aluminum foil, 0.5mm (0.02in) thick, annealed, Puratronic, 99.9995% (metals basis)
                • Aluminum ingot, Puratronic, 99.9995% (metals basis)
                • Aluminum slug, 6.35mm (0.25in) dia x 12.7mm (0.50in) length, Puratronic, 99.9995% (metals basis)
                • Aluminium,piece
                • Aluminium, shot (2-10 mm), 99.5%
                • Aluminium, powder, synthesis grade
                • Aluminum metal granular 8-20 mesh 10g [7429-90-5]
                • Aluminum metal granular 30 mesh and finer 10g [7429-90-5]
                • Aluminum metal dust 10g [7429-90-5]
                • Aluminum metal filings 10g [7429-90-5]
                • Aluminum metal turnings 10g [7429-90-5]
                • Aluminum metal foil 10g [7429-90-5]
                • Aluminium Powder < 250 micron
                • Aluminium Powder < 1000 micron
                • "Aluminium Powder -100, +325 mesh"
                • Aluminium Granules 2-5 mm
                • Aluminium Granules 3-5 mm
                • Aluminium Pellets 3.9 x 2.5 mm
                • Aluminium Ingot
                • Aluminium Granules 2-10 mm
                • Aluminium Pellets 9.5 x 3.2 mm
                • Aluminium Wire 5.0 mm diameter
                • Aluminium Rod 6.0 mm diameter
                • Aluminium Wire 0.25 mm diameter
                • Aluminium Rod 25 mm diameter
                • "Aluminium Tube 6.0 mm diameter, 0.75 mm wall thickness"
                • "Aluminium Tube 10.0 mm diameter, 1.0 mm wall thickness"
                • Aluminium Wire 0.5 mm diameter
                • Aluminium Wire 1.0 mm diameter
                • Aluminium Wire 2.0 mm diameter
                • Aluminium Rod 5.0 mm diameter